
Editor: Jane Cleland-Huang
DePaul University
jhuang@cs.depaul.edu

24 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

REQUIREMENTS

EVERY SOFTWARE SYSTEM is
potentially vulnerable in ways that
aren’t always imagined during de-
velopment. For example, pacemak-
ers and implantable cardioverter-
de� brillators (ICDs), which monitor
and regulate cardiac rhythms, typi-
cally provide wireless access to
healthcare providers so that they
can modify settings and collect te-
lemetry. However, a malicious user
could transmit commands to ICDs
to collect private data or change
the device’s therapy settings.1,2 Re-
cently, well-known hacker Barnaby
Jack claimed to have developed soft-
ware that let him shock patients
within a 50-foot radius. Anticipat-
ing such potential threats, doctors
proactively disabled the wireless
features of former US Vice President
Dick Cheney’s pacemaker.

Malicious attacks’ potential to
cause real (and diverse) harm holds
true for numerous other software
systems. For example, University of
Michigan researchers demonstrated
how easy it was to take control of a
traf� c light system: a person could
ensure that the lights were always
green along his or her route or could
seriously disrupt traf� c by turning
all the lights red.3 Similarly, Uni-
versity of California, San Diego and

University of Washington research-
ers used a car’s telematics unit to re-
motely disable the brakes, turn off
the headlights, and manipulate dash-
board gauges.4,5

White-collar crime involving data
breaches are rampant, and govern-
ments are investigating the potential
for terrorist attacks on power grids,
airplanes, and other public services.
Technology is a double-edged blade:
although computers let us pursue
ever-more-impressive innovations,
we’re likewise subjected to growing
possibilities for abuse.

So, how do we build secure prod-
ucts that are hardened against adver-
sarial attacks? Let’s take a look.

Thinking about Threats
Many steps to improve security can
be taken at various stages of soft-
ware development. However, an im-
portant place to begin is with a dedi-
cated analysis of potential threats.
Without a sound understanding of
the possible threats against a given
system, it’s unlikely that develop-
ers will be able to adequately defend
against them.6 Surprisingly, this
step is often performed hastily or
skipped. One problem is that devel-
opers often assume they understand
all common attack patterns and

therefore fail to explore each sys-
tem’s speci� c vulnerabilities. Alter-
natively, they might assume they can
patch in security later in the design
by following accepted security poli-
cies and procedures.

To some extent, each system is
unique. Even supposing that the sys-
tem components are well understood
and previously have been composed
in the same way, the ways a deployed
system is used, misused, or reappro-
priated can introduce unanticipated
security vulnerabilities. Building a
secure system requires proactive, rig-
orous analysis of the threats to which
it might be exposed, followed by
systematic transformation of those
threats into security-related require-
ments. These requirements can then
be tracked throughout the develop-
ment life cycle.

Threat modeling aims to

• identify attackers’ potential
abilities and goals and

• catalog possible threats that
the system must be designed to
mitigate.

 We consider threat modeling a re-
quirements activity. The most bene� t
comes from understanding what se-
curity requirements are needed and

Keeping Ahead
of Our Adversaries
Jane Cleland-Huang, Tamara Denning, Tadayoshi Kohno, Forrest Shull, and Samuel Weber

REQUIREMENTS

 MAY/JUNE 2016 | IEEE SOFTWARE 25

using those requirements to drive
architecture decisions, develop test
strategies, and engage in other soft-
ware development activities.

However, in reality, threat-
modeling techniques vary and can be
applied to both existing and green-
field systems; different techniques are
more suited to different software de-
velopment activities and different de-
velopment domains. Some techniques
are like checklists, enumerating pos-
sible threats developers should con-
sider in the context of their system.
Others are less deterministic and try
to inject more creativity to stimulate
thinking about unusual attack vec-
tors. All techniques encourage devel-
opers to think more critically about
their system and about ways to sub-
vert it; this contrasts with the more
usual approaches that focus on func-
tionality. As you might expect, devel-
opers find it exceptionally difficult

to be complete and consistent and to
truly put themselves in the shoes of
an attacker.

Security Cards: A Threat
Brainstorming Toolkit
To assist threat analysis, Tamara
Denning, Batya Friedman, and Ta-
dayoshi Kohno developed the Security
Cards.7 The Security Cards consist
of 42 cards divided into four catego-
ries, or dimensions: Human Impact,
Adversary’s Motivations, Adversary’s
Resources, and Adversary’s Methods.

Here, we illustrate how the cards
might serve as starting points to ex-
plore potential threats to a techno-
logical system—in this case, an ICD.
This thought exercise is only to ex-
plore what these software develop-
ment processes would look like when
applied to a system concept. We don’t
intend to make statements regarding
current ICD security or what security

considerations have been incorpo-
rated into the development process.

Human Impact
This dimension explores how secu-
rity breaches could affect humans.
The impacts range from personal-
privacy violations to widespread
societal impact. Threat-modeling
sessions could start by ranking the
Human Impact cards according to
their relevance to the system under
consideration. In this case, a highly
relevant card is the Physical Well-
being card (the first card in Figure
1). It asks us to think about how a
misused or compromised ICD could
impact people’s physical well-being.
However, we could also consider
cards such as Emotional Wellbeing
(for example, patients are aware of
the threat to their health), Financial
Wellbeing or Relationships (for ex-
ample, the attack aims to discredit

REQUIREMENTS

26 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

the ICD company), or Personal Data
(for example, the attacker wants to
use the identifying personal data
stored on the device).

Adversary’s Motivations
This dimension explores why some-
one might want to attack a system.
It helps provide a framework to ex-
plore a potential attack’s scope and
intended targets. For example, the
Malice or Revenge card (the sec-
ond card in Figure 1) might lead us
to consider the situation in which
an adversary attacks the ICD user
owing to extreme emotion. Other
motivation- related cards could in-
clude Self-Promotion (for example,
the attacker wants to demonstrate
technical prowess) or Diplomacy or
Warfare (for example, the attacker
aims to take down a political enemy
who happens to have an ICD). Con-
sidering potential adversaries’ mo-
tivations helps determine what re-
sources they might have and helps us
construct attacker pro� les.

Adversary’s Resources
This dimension explores assets an
adversary might use to launch an
attack. These include hardware
and software tools, technical ex-
pertise, and various forms of in-
� uence. In this case, we select the
Expertise card (the third card in
Figure 1) and consider the hacker’s
potential technical skills. Another
relevant card could be A Future
World, which considers potential
future attacks, given that interest
exists in increasing the capabilities
of remote checkups. We might also
consider Impunity (for example, the
attack might be dif� cult to pin on
a particular person or to prosecute)
or Inside Knowledge (for example,
a former employee uses detailed,
proprietary knowledge about the
architecture).

Adversary’s Methods
This dimension explores how an ad-
versary might attack the system, in-
cluding technology, coercion, and

abusing logistical and bureaucratic
processes. We might select the Tech-
nological Attack card (the fourth
card in Figure 1), given that re-
searchers have previously demon-
strated such attacks. We also could
consider cards such as Multi-Phase
Attack (for example, the adversary
tampers with software in the doc-
tor’s of� ce responsible for sending
commands to the ICD), Indirect At-
tack, or Attack Cover-up.

From Threats to Requirements
Exhaustively cataloging threats is
of limited use if we don’t use the in-
formation to improve the software
we’re developing. To illustrate mov-
ing from threats to requirements,
suppose our threat model contains
the following threat, written from
a malicious user’s perspective: “As
an IT specialist with intent to physi-
cally harm an ICD patient, I’ll
launch an attack on the device that
will change the intended effects on
the patient’s heart.”

Example Related Concepts
Example Assets: access to
food and water · access to
electricity · an individual's
location

Example Targets: medical
devices · cars · medication or
allergy records

How might your system have direct or
indirect impact on people's physical
wellbeing? How might data or system
unavailability, unauthorized alterations,
or confidentiality breaches cause harm?

© 2013 University of Washington, securitycards.cs.washington.edu

Physical Wellbeing
Human Impact

Example Related Concepts
Example Targets: ex-employer
· neighbor · rival

Example Actions:
misinformation · cause
physical harm · cause
monetary damage · cause
emotional damage

How might the adversary use or abuse
your system for malice or to exact
revenge? What kind of individual or
group might target your system out of
malice or revenge?

© 2013 University of Washington, securitycards.cs.washington.edu

Malice or Revenge
Adversary's Motivations

Example Related Concepts
Example Expertise: novice at
network penetration · expert
at picking locks · proficient
con artist

Example Contributors:
hobbyist adversary ·
government adversary

What levels of expertise does the
adversary have (or have access to)?
How do different kinds of expertise allow
the adversary to execute a broader
range of attacks on your system?

© 2013 University of Washington, securitycards.cs.washington.edu

Expertise
Adversary's Resources

Example Related Concepts
Example Attacks: denial-
of-service · spoofing ·
repudiation · elevation of
privilege · replay attacks ·
relay attacks · jamming

Example Outcomes: acquire
password files · eavesdrop
on confidential exchanges ·
install bot software

What kinds of technical attacks might
the adversary perform over an analog
or digital link? How would this enable
or amplify an attack on confidentiality,
integrity, or availability?

© 2013 University of Washington, securitycards.cs.washington.edu

Technological Attack
Adversary's Methods

The ICD is life-supporting.
Modifying its functionality could
cause a patient’s death.

If a nefarious person became
embroiled in a dispute with an
ICD user, he or she could attempt
to leverage the ICD to harm
its user.

The attacker might have a
graduate degree in IT and the
skills to hack into the ICD.

Tamper with the ICD. Change
the therapy settings to harm the
patient’s health.

FIGURE 1. Four Security Cards. Developers can use Security Cards to explore potential threats to a technological system—in this

case, an implantable cardioverter-de� brillator (ICD).

REQUIREMENTS

MAY/JUNE 2016 | IEEE SOFTWARE 27

We need to identify and specify
requirements that prevent this adver-
sary from achieving this goal. The
� rst step is to identify vulnerabilities
that enable each speci� c threat.

Figure 2 illustrates this through
a partial analysis of vulnerabilities
and issues that might facilitate an
attack on an ICD. The ICD is vul-
nerable if it lacks an authentica-
tion mechanism or the adversary
acquires authentication by stealing
login information or eavesdropping.
To execute the attack, the adversary
must successfully transmit a valid
command to the ICD. For the attack
to succeed, the ICD patient should
either be unaware of the attack and
therefore unable to take remedial
action (such as moving out of trans-

mission range) or be immediately
incapacitated.

We then analyze the associated
vulnerabilities, evaluate possible mit-
igations, and specify them as candi-
date requirements. The scenario in
which the ICD has no authentication
mechanism is a potential problem for
embedded medical devices, in which
power consumption is crucial. To ad-
dress this problem, we consider spec-
ifying the requirement, “ICD com-
mands will be accepted only from
veri� ed controllers.” To address the
scenario in which the attacker ac-
quires authentication, we consider
specifying the requirement, “All data
transmitted to the ICD must be en-
crypted.” However, we must care-
fully examine both requirements and

balance them against the need for
additional processing, which would
drain battery life. Furthermore, de-
creased accessibility could inhibit ac-
cess to the ICD in an emergency.

So, we might consider an alter-
nate requirement. In lieu of limit-
ing access to veri� ed controllers
and encrypting data, a next-best
option might be to provide an au-
dible warning to ICD patients each
time the device starts communicat-
ing with a controller. Such a require-
ment would clearly be a tradeoff.
It’s unlikely to provide suf� cient se-
curity in the face of Barnaby Jack’s
shock attack, for example, but it
might partially protect the user
from privacy invasions or unauthor-
ized recon� gurations.

AND

OR

The ICD accepts commands
from an unauthorized

external program.

OR

The adversary
transmits a

message to the ICD.

WEAK
OR

The ICD patient doesn’t
or can’t mitigate

the attack.

The ICD has no
authentication
mechanism.

The ICD
supports

authentication,
but the

adversary
acquires

authentication
info.

ICD commands
will only be

accepted from
veri�ed controllers.

The ICD accepts
unencrypted data.

The ICD only
accepts

encrypted data,
but the adversary

knows the
encryption key.

All data
transmitted

to the ICD must
be encrypted.

The ICD patient is
unaware of data

transmission.

The ICD patient
will be noti�ed
each time data
is transmitted.

The ICD patient is
aware of data
transmission
but takes no

remedial actions.

The ICD patient
is incapacitated

by the attack.

As an IT specialist with intent to physically harm an
ICD patient, I’ll launch an attack on the device that
will change the intended effects on the patient’s heart.

FIGURE 2. A threat tree models system vulnerabilities that potentially enable the threat—in this case, an attack on an ICD. Additional

vulnerabilities could exist that the � gure doesn’t show.

REQUIREMENTS

28 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Maintaining Traceability
Security requirements are driven by
the threat-modeling process but are
ultimately constrained by hardware
and software tradeoffs. However,
being able to maintain traceability
from speci� c requirements back to
the threats they address will likely be
useful as tradeoffs among require-
ments are negotiated. It’s important
to ensure that some mitigation for
important threats is maintained,
even if the form of that mitigation
needs to adapt and evolve.

Luckily, most of us don’t have to
build systems that must resist attacks
by determined nations and whose
failure would cause people to die.
Attempting to provide perfect secu-
rity for such systems not only isn’t
necessary but also almost certainly
wouldn’t be cost effective. Another
bene� t of threat modeling (and ac-
cording to some people, the primary
bene� t) is documenting what threats
won’t be mitigated.

Without a documented, consis-
tent understanding of what threats
are out of scope, systems typically
end up with extremely poor secu-
rity. For example, many stories ex-
ist of systems whose password reset
functionalities totally undermined
all the other security features. After
all, an attacker only needs to target
the weakest point in a system’s de-
fenses. As another example, many
organizations decide that it’s not
worth building technical solutions
to counter insider attacks (employees
deliberately doing malicious actions
to their employer’s systems). How-
ever, without explicitly documenting
this decision, it’s all too easy to over-
look that the system must be built so
that after employees have been � red,
their knowledge of system passwords
and procedures can’t be used against
their ex-employer.

I n the end, we all agree that se-
curity requirements are needed.
However, writing them with-

out engaging in threat modeling
will likely lead to cookie-cutter re-
quirements that capture the same
old problems. We will probably re-
member to include standard security
functions, although we might not
remember to specify them in the re-
quirements document. It’s less likely
we’ll think about speci� c threats that
might be unique to our system. So,
threat modeling is an essential activ-
ity that should form a natural pre-
lude to the requirements process.

Acknowledgments
This material is based partly on work

funded and supported by the US Depart-

ment of Defense under contract FA8721-

05-C-0003 with Carnegie Mellon Uni-

versity for the operation of the Software

Engineering Institute, a federally funded

research and development center.

References
 1. D. Halperin et al., “Pacemakers and

Implantable Cardiac De� brillators:

Software Radio Attacks and Zero-

Power Defenses,” Proc. 2008 IEEE

Symp. Security and Privacy (SP 08),

2008, pp. 129–142.

 2. S. Gollakota et al., “They Can Hear

Your Heartbeats: Non-invasive

Security for Implanted Medical

Devices,” Proc. ACM SIGCOMM

2011 Conf. (SIGCOMM 11), 2011,

pp. 2–13.

 3. B. Ghena et al., “Green Lights For-

ever: Analyzing the Security of Traf� c

Infrastructure,” Proc. 8th USENIX

Workshop Offensive Technologies

(WOOT 14), 2014; www.usenix.org

/conference/woot14/workshop

-program/presentation/ghena.

 4. A. Czeskis et al., “Experimental

Security Analysis of a Modern Au-

tomobile,” Proc. 2010 IEEE Symp.

Security and Privacy (SP 10), 2010,

pp. 447–462.

 5. S. Checkoway et al., “Comprehensive

Experimental Analyses of Automotive

Attack Surfaces,” Proc. 20th USENIX

Conf. Security (SEC 11), 2011, p. 6.

 6. A. Shostack, Threat Modeling: De-

signing for Security, John Wiley &

Sons, 2014.

 7. T. Denning, B. Friedman, and T. Koh-

no, The Security Cards: A Security

Threat Brainstorming Toolkit, Univ.

Washington, 2013; http://security

cards.cs.washington.edu.

JANE CLELAND-HUANG is a professor of

software engineering at DePaul University.

Contact her at jhuang@cs.depaul.edu.

TAMARA DENNING is an assistant professor

at the University of Utah’s School of Computing.

Contact her at tdenning@cs.utah.edu.

TADAYOSHI KOHNO is the Short-Dooley

Professor in the Department of Computer Sci-

ence & Engineering and an adjunct associate

professor in the Information School at the Uni-

versity of Washington. Contact him at yoshi@

cs.washington.edu.

FORREST SHULL is the assistant director for

empirical research at Carnegie Mellon Univer-

sity’s Software Engineering Institute. He’s editor

in chief emeritus of IEEE Software. Contact him

at fjshull@sei.cmu.edu.

SAMUEL WEBER is a senior research staff

member at Carnegie Mellon University’s Soft-

ware Engineering Institute, where he’s a member

of the Science of Cyber-security group. Contact

him at samweber@cert.org.

See www.computer.org/
software-multimedia
for multimedia content
related to this article.

software-multimedia
for multimedia content
related to this article.

