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ABSTRACT 

Technology offers the potential to objectively monitor people‘s 

eating and activity behaviors and encourage healthier lifestyles. 

BALANCE is a mobile phone-based system for long term 

wellness management. The BALANCE system automatically 

detects the user‘s caloric expenditure via sensor data from a 

Mobile Sensing Platform unit worn on the hip. Users manually 

enter information on foods eaten via an interface on an N95 

mobile phone. Initial validation experiments measuring oxygen 

consumption during treadmill walking and jogging show that the 

system‘s estimate of caloric output is within 87% of the actual 

value. Future work will refine and continue to evaluate the 

system‘s efficacy and develop more robust data input and activity 

inference methods. 
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J.3 [Computer Applications]: Life and Medical Sciences – 

health.  
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1. INTRODUCTION 
The United States and many other industrialized countries face an 

epidemic of obesity due to plentiful energy-dense foods and a lack 

of opportunities for physical activity. Research from the authors 

and others has shown that most people underestimate their caloric 

intake – what they eat [3][10] – and overestimate their caloric 

expenditure – the calories they burn [6]. To help people make 

better lifestyle choices conducive to weight loss and weight 

control, we seek to provide an easy way to monitor the balance 

between their caloric intake and caloric expenditure. An ideal 

system would require a small time investment, minimize the 

cognitive burden on the user, and provide just-in-time feedback 

and encouragement. The easier the system is to use the more 

people will begin to use it, and continue to use it daily. Since this 

is a system that people will want to access continuously 

throughout their day, the mobile phone is an ideal platform for 

such a system. People carry their mobile phones with them at 

most times, meaning that a phone-based wellness system would 

provide ubiquitous access to information on caloric intake, 

expenditure, and balance. In addition to providing convenient 

access, it would be ideal for a wellness system to automatically 

detect the user‘s activities and accurately infer the corresponding 

caloric expenditure objectively to reduce the error associated with 

self-reported activity levels. 

We propose the BALANCE (Bioengineering Approaches for 

Lifestyle Activity and Nutrition Continuous Engagement) system, 

a mobile phone-based system that aims to integrate the above 

characteristics into a useful application for long term wellness 

management. A mobile phone interface with customization and 

adaptation makes food entry easier, and caloric expenditure is 

measured using a wearable sensor. 

2. RELATED WORKS 

2.1 Wellness Software 
A number of commercial web applications exist – such as 

DietTV.com [5] – which facilitate nutritional awareness, dieting, 

and fitness. There are also smartphone and PDA-based 

applications for recording consumed foods and exercises, such as 

those sold by Keyoe [13]. The iPhone App Store hosts a number 

of applications for recording nutritional and exercise history, 

including iShape and Absolute Fitness. Nokia‘s Research Center 

offers the Wellness Diary [18] for download – an application for 

Nokia S60 phones that allows users to input and track health 

statistics, including exercise and food choices. 

Tsai et al. [21] developed the PmEB software for a mobile phone 

with a similar goal to BALANCE: allowing easy user input and 

review of their relative caloric intake and caloric expenditure. The 

authors found that users preferred to record their eaten foods and 

exercise sessions via the PmEB software rather than via a paper 
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Figure 1. Photographs of the system hardware. (left) The Mobile Sensing Platform (MSP) shown worn on the hip. (middle) The 

Nokia N95 mobile phone. (right) Test subject wearing apparatus attached to a metabolic cart for measuring oxygen consumption 

during treadmill testing. 

diary1. Consolvo et al. [4] developed the UbiFit wellness system 

for use on a mobile phone. UbiFit automatically detects five 

activities – walking, running, bicycling, and using a commercially 

available elliptical trainer or stair-stepping machine – and allows 

users to enter in other performed activities that may not be 

measured directly, such as swimming. The users‘ activities nurture 

an electronic garden display on the mobile phone,  giving users 

immediate feedback on their exercise level. 

Siek et al. [20] developed a PDA-based application for semi-

literate patients with kidney disease that helps them monitor their 

nutrient intakes. The system offers barcode scanning and voice-

recording as a means of simplified food entry, but the open-source 

UPC database used for the project contained only 60% of the 

participants‘ scanned barcodes. HyperFit [9] also allows users to 

―scan‖ barcodes using a camera phone and image processing 

techniques. The authors suggest that in addition to using this 

scanning to speed up the food entry process, sheets of barcodes 

can be kept and used as a list of favorite meals, snacks, and 

exercises.  

Other research and commercial food-tracking systems use 

photographic input from a camera or a camera phone. These 

images are sometimes stored for later reference by the user, as in 

the DietSense prototype [19] and Kaczkowski et al.‘s work [12]. 

In other systems the photographs are sent off to a nutritionist for 

professional evaluation, as in Myca Nutrition‘s Picture Food 

Journal Service (formerly MyFoodPhone) [17] and Wellnavi [22]. 

None of the above systems combine food input with objective 

activity inference. An upcoming product, Fitbit [7], purports to 

automatically detect activity levels and quality of sleep via a hip 

and wrist-mounted accelerometer, which it integrates with a web 

site where users can also log their food intake. The contribution of 

this work is providing a system which allows users to track both 

their food intake and their caloric expenditure in real-time on a 

                                                                 

1 A paper diary is a traditional monitoring method in the nutrition 

sciences. The subject takes home the diary and uses it over a 

specified time period – usually 3-7 days – during which the 

subject either estimates or measures all consumed foods and 

beverages and records them in the diary [11]. 

device that accompanies the user (almost) everywhere. We believe 

that the omnipresence of the device will provide better 

opportunities to influence behavior when most appropriate: at the 

time when the user is making decisions.  

2.2 Activity Recognition 
Activity recognition using sensors has received a lot of attention 

in the research community over the past several years. Maurer et 

al. [16] use their multi-sensor platform for recognizing normal 

daily activities. Ganti et al. [8] use sensors embedded in clothing 

for activity recognition. Previous work from the authors [14] uses 

the Mobile Sensing Platform (MSP) for activity recognition. 

Work presented in this paper builds on our previous work by 

incorporating caloric expenditure estimations based on sensed 

physical activities with caloric inputs based on food intake. 

Measuring caloric expenditure through physical activity is of great 

interest to the healthcare community and equipment vendors who 

market hardware to perform these measurements. The BodyMedia 

WMS and the Actical Physical Activity Monitor are two popular 

products in the market today that measure calorie expenditure. 

The system that is most closely related to ours is the IDEEA 

system, which attempts to measure both activity and energy 

expenditure by monitoring five sensors placed on different parts 

of the body [23]. Using their system the authors were able to 

measure caloric expenditures within 95% of actual values. 

However, the system requires the five sensors to be physically 

linked together with wires and then connected to a personal 

computer for data collection; this is an unwieldy configuration 

that cannot be used to monitor daily activities. In addition, the 

IDEEA thus far has only been validated to estimate the energy 

expenditure of basic movement patterns such as sitting, standing, 

leaning against a wall, and walking or jogging on level ground. 

3. BALANCE SYSTEM 

3.1 Activity Sensing 
The current implementation of our system uses a Nokia N95 cell 

phone in conjunction with the MSP (Figure 1). The MSP 

combines an Intel XScale processor with 8 different sensing 

capabilities including 3-D accelerometry, barometric pressure, 



 

(a) BALANCE software’s main 

screen: the “Personal Fuel 

Gauge.” 

 

(b) The summary screen of daily 

food intake. 

 

(c) In the custom meal interface 

individual food components of a 

meal can be selected or 

deselected when viewing the 

meal. 

 

(d) The tab showing the daily 

activities that have been 

automatically detected. 

Figure 2. Screenshots from the BALANCE software.  

 light sensors, humidity, sound, and position using a GPS. The unit 

has modest storage capacity to perform calculations in real-time. 

The hardware is packaged in a box and meant to be worn on the 

waist, as shown above. 

The MSP‘s inference engine recognizes when a user is performing 

gross motor patterns such as sitting, walking, running and 

bicycling. Using the multiple sensors the unit can distinguish, for 

example, whether a person is walking up the stairs or riding an 

elevator up one flight. In initial proof-of-concept experiments, 

data was collected from various people and used to train a Naïve 

Bayes classifier. In our current validation experiments, when the 

system detects that the individual is walking or running it 

computes the step rate and tracks the number of steps the person 

has taken; this information is transmitted to the N95 over a 

Bluetooth link. In the current implementation, activity inferencing 

is done based only on data from the accelerometer. 

3.1.1 Future Work 
We have conducted tests on subjects to collect data about their 

caloric expenditure while walking and jogging on the treadmill at 

various speeds and elevations (see Section 4) and while 

performing activities of daily living, such as sweeping, in a field 

test.  We will extend our caloric expenditure calculations to 

handle more common daily activities so as to be able to calculate 

the caloric expenditure for activities done throughout the day. For 

the treadmill tests, the surface‘s gradient was obtained from the 

treadmill itself. For the field tests we plan to leverage the MSP‘s 

barometer and GPS to obtain this information.  

Given the increasing availability of sensors on mobile devices like 

cell phones, we are currently working on building an activity 

inference engine that would work with data from the phone‘s 

built-in accelerometer. Additionally, we will use data from the 

built-in GPS receiver to infer the subjects‘ mode of transportation 

and account for that in the caloric expenditure calculations. 

3.2 Food Input Interface 
The BALANCE system has a mobile phone interface for entering 

consumed foods, adding custom exercises that are not detected, 

such as swimming or primarily upper-body movements, and 

providing a quick summary of the user‘s current food-exercise 

balance. The software deals with calories in terms of ‗Calorie 

Hundreds Impact Points‘ (CHIPs), a simplified unit developed for 

use in the PACE Project [2]; a CHIP is equal to 100 calories.  

Figure 2a shows the home screen of the application which 

displays the user‘s ―Personal Fuel Gauge‖ – her relative caloric 

intake and caloric expenditure. The details of a day‘s food 

consumption are shown in more detail on a separate screen, as 

shown in Figure 2b.  

To support ease of food entry, the BALANCE software consists of 

two primary food databases. The first is an extensive master 

database with detailed nutrition information. This database 

contains many very similar items, such as ―Yogurt‖, ―Fruit 

Yogurt‖, ―Light Yogurt‖, and so on. This makes it difficult and 

time-consuming to find specific foods when creating a food entry. 

Most people tend to eat a smaller number of foods fairly 

consistently, so there is an additional personal food database 

which consists of all foods that the individual user has ever 

entered. The first time the user eats a food, she is required to 

search the master database to find the item. The item is then 

copied into the personal food database, which makes it easier to 

re-enter in the future. The personal food database is also used to 

store custom entries, such as a favorite brand or flavor of yogurt 

that may not be in the master database.  

In addition to being able to search the master and personal 

databases for foods that have been eaten, the software allows the 

specification of ‗Favorites.‘ The ‗Favorites‘ list includes both 

single food items and meals (or recipes) consisting of several food 

items. The user can construct a common meal – such as a typical 

breakfast of cornflakes with bananas, milk and orange juice – and 

then easily add all or part of the items to her daily food diary 



(Figure 2c). The software offers an interface for adding custom 

exercise entries that is similar to the food interface as well as a 

screen for viewing that day‘s detected exercises (Figure 2d). 

3.2.1  Future Work 
The BALANCE software employs strategies to streamline food 

entry by keeping track of entries over time. Anecdotally, 

nutritionists we consulted with observed that people tend to have 

little variance in what they eat for breakfast – that is, they tend to 

eat very similar things for breakfast every day – slightly more 

variance in what they eat for lunch, and vary greatly in what they 

eat for dinner. We can take advantage of these patterns by 

providing ordered, targeted lists of foods based on time of entry.  

Another strategy we are beginning to explore is the use of location 

and time of day data to streamline food entry. We can imagine 

that some locations have very consistent food entries—consider 

your favorite coffee shop where you usually have a tall skim latte 

and biscotti. When the user creates a food entry at that location, 

the software can present the most common food entries at the top 

of the list. In contrast, at home you may not eat the same food 

every night at your dining room table, but in the morning you may 

always eat one of your three favorite breakfasts.   

In addition to using context and history to modify the food input 

interface to streamline entry, we plan to investigate the use of 

context and history to remind the user of a potential missed entry. 

Revisiting the coffee shop scenario, one can imagine that when 

the user leaves the coffee shop and has not entered anything, the 

phone reminds her to enter something if appropriate. We realize 

that this feature may be met with mixed appreciation, and it will 

need to be investigated thoroughly to identify a pattern of helpful 

reminders rather than bothersome interruptions. In addition, this 

reminder feature may be something that changes over time: when 

the user is beginning the process of tracking the software can 

provide frequent reminders; as the user becomes more 

comfortable with the process it may be appropriate to provide 

reminders less often.  

3.2.2 User Studies 
We are in the process of conducting paper prototype sessions to 

redesign the BALANCE application‘s user interface. Paper 

prototype sessions have been conducted with 4 computer science 

graduate students; we are poised to perform a greater number of 

paper prototype sessions with a more diverse population. 

In the near future we will conduct focus groups to receive 

feedback on the user experience of the BALANCE system. 

Approximately 5 participants at a time will be sent home with the 

system for 3 days and instructed to enter the foods and beverages 

consumed and any purposeful bouts of activity not currently 

sensed by the mobile platform. At the end of the 3 days the 

participants will meet with a researcher to answer questionnaires 

about their experiences and participate in group discussions about 

the system. Two user experience questionnaires will be 

administered to obtain scalar responses in addition to the open-

ended feedback obtained during the focus groups 

4. VALIDATION OF CALORIC OUTPUT 

MEASUREMENTS 
To validate the accuracy of our approach, we designed and carried 

out several experiments comparing our calculated caloric 

expenditure against the actual measured value. 

As a starting point for our energy estimation we used equations 

that estimated caloric expenditure for sitting, walking, and 

running based on the American College of Sports Medicine‘s 

Guidelines for Exercise Testing and Prescription [15]. These 

equations are described in Figure 3. The three main components 

of the equations are: the resting metabolic rate (R), the horizontal 

component of movement (H), and the vertical component of 

movement (V). These equations provide an estimate of VO2 based 

on speed and grade, which are then multiplied by weight and 

duration2. VO2 is defined to be the volume of oxygen uptake for a 

person, in liters per minute. The VO2 estimate can be easily 

converted to caloric expenditure by multiplying the result by the 

caloric equivalent of 5 kcal/min [1]. 

The equations require knowledge of the subject‘s speed, the 

surface‘s grade, and the subject‘s weight. Weight is easy to 

measure and does not change significantly over short periods of 

time, so our goal was to accurately quantify speed and grade. We 

plan to use the change in barometric pressure to measure grade 

change in field tests, but the tests we used for this study were on a 

treadmill in a lab setting where barometric pressure does not 

change in response to elevation changes. Thus, we use the grade 

as reported by the treadmill. This left us with determining speed 

as our main measurement obstacle. 

Our lab tests are designed to test activities such as sitting, 

standing, and walking and running at different speeds and grades. 

After being outfitted with an MSP and apparatus for measuring 

VO2 (Figure 1), our subjects were asked to complete a three-

minute sitting stage, a two minute standing stage, six treadmill 

stages of three minute walking/running intervals, and a final five 

minute sitting stage. The sitting and standing stages at the 

beginning of the test allowed us to measure the subject‘s base 

metabolic rate, and the sitting stage at the end allowed us to 

measure the rate of recovery from an active state to a normal 

resting state. The six walking/running stages, described in Table 

1, were always executed in random order. During our tests 

subjects were also fitted with a heart rate monitoring device to 

detect a physiologic response to exercise. If at any time during the 

test the subject exceeded 85% of her age-predicted maximum 

heart rate, calculated as (220 – subject age), the remaining high 

intensity stages were skipped and the subject continued to the next 

low intensity stage. Thus, not all subjects completed all stages. 

This should have little effect on our results since the skipped 

stages forced the subject into an intensity level outside of what we 

expect her to engage in during a normal day. 

Our overall accuracy from our initial 10 treadmill tests was 87%. 

Generally our estimates were a little lower than actual, as shown 

in Figure 4. Changes in levels of activity cause the body to react 

by increasing or decreasing VO2 consumption relative to the 

increase or decrease in activity. However, this change is not 

                                                                 

2 Note that for sitting, H and V are both 0, so we only count the 

resting metabolic rate. 



 

Figure 3. Metabolic equations. 

 

Figure 4. Comparison of calculated energy expenditure as 

compared to actual energy expenditure for 10 subjects. 

 

Figure 5. Estimated (red, rectilinear) vs. actual caloric expenditure, as measured by VO2, (blue, curvier) over the span of one test. 

instantaneous. There is a certain amount of lag associated with the 

change which is considerably more noticeable for large changes of 

activity – for example, going from sitting to walking briskly at 3.5 

mph. This lag period also varies greatly from person to person 

depending on the person‘s fitness level. A fit individual will have 

a much shorter lag period, as her body is able to reach a 

physiologic steady-state and recover from prior activity more 

quickly. An unfit individual‘s lag will result in a much more 

gradual change towards steady state. Our system, however, reports 

the instantaneous change in activity, which is what caused a 

majority of our measurement error. Independent of the six 

treadmill stages, we performed experiments to compare the values 

reported by the two systems. Figure 5 shows a comparison 

between the actual VO2 reading and our estimate, illustrating 

some of the lags in caloric expenditure which occur in test 

subjects. Notably, the most significant divergence is in the sudden 

drop reported by our system, while the VO2 reading did not drop 

as much. This was due to the subject getting off the treadmill for a 

very short time period to adjust the test equipment. Since the 

interruption was very brief the VO2 did not change significantly, 

while the sensing equipment did detect the sudden drop in activity 

level.  

Our validation work is ongoing and we anticipate a final sample 

of 65 subjects of varying ages and body weights. As of this 

writing, field tests are in progress to collect data from subjects 

involved in normal daily activities. We expect better accuracy for 

field tests because the physiologic change from rest to activity is 

much more subtle, resulting in a more rapid increase in VO2 to 

steady-state.  

 

MPH 1.8 2.5  3.0 3.5 4.5 4.5 

Grade 0% 5% 0% 7.5% 0% 2.5% 

Table 1. Experimental Walking/Running Stages 

 

5. CONCLUSION 
The major innovation of this bioengineering technology lies in its 

ability to capture peoples‘ movement through space and time 

under free-living conditions. We believe this work will lead to 

numerous applications: for example, development of a personal 

assistive device that could be used to monitor energy balance in 

real-time, coupled with detailed feedback on movement through 

space and time, to facilitate behavior changes favorable to weight 

loss and/or weight control. 

Our year 2 work will be to test, debug, and refine the cell phone 

prototype using several turns of the iterative cycle. In the third 

year we will perform rigorous validation experiments on the final, 

fully completed BALANCE system using VO2 and doubly-labeled 

water as criterion measures. 
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